12 research outputs found

    Fuzzy cluster validation using the partition negentropy criterion

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-04277-5_24Proceedings of the 19th International Conference, Limassol, Cyprus, September 14-17, 2009We introduce the Partition Negentropy Criterion (PNC) for cluster validation. It is a cluster validity index that rewards the average normality of the clusters, measured by means of the negentropy, and penalizes the overlap, measured by the partition entropy. The PNC is aimed at finding well separated clusters whose shape is approximately Gaussian. We use the new index to validate fuzzy partitions in a set of synthetic clustering problems, and compare the results to those obtained by the AIC, BIC and ICL criteria. The partitions are obtained by fitting a Gaussian Mixture Model to the data using the EM algorithm. We show that, when the real clusters are normally distributed, all the criteria are able to correctly assess the number of components, with AIC and BIC allowing a higher cluster overlap. However, when the real cluster distributions are not Gaussian (i.e. the distribution assumed by the mixture model) the PNC outperforms the other indices, being able to correctly evaluate the number of clusters while the other criteria (specially AIC and BIC) tend to overestimate it.This work has been partially supported with funds from MEC BFU2006-07902/BFI, CAM S-SEM-0255-2006 and CAM/UAM project CCG08-UAM/TIC-442

    Clustering Algorithms: Their Application to Gene Expression Data

    Get PDF
    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and iden-tify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure
    corecore